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ABSTRACT

Visual working memory (VWM) relies on a distributed cortical network. Yet, the extent to which
individual cortical areas, like early visual cortex and intraparietal sulcus, are essential to VWM
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storage remains debated. Here, we reanalyze key datasets from two independent labs to

address three topics at the forefront of current-day VWM research: Resiliency of mnemonic
representations against visual distraction, the role of attentional priority in memory, and brain-
behavior relationships. By utilizing different analysis approaches, each designed to test different
aspects of mnemonic coding, our results provide a comprehensive perspective on the role of
early visual and intraparietal areas. We emphasize the importance of analysis choices, and how
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a thorough understanding of the principles they test is crucial for unraveling the distributed
mechanisms of VWM. Consequently, we caution against the idea of a singular essential storage
area, which could limit our comprehension of the VWM system.

Introduction

Recent evidence points towards an understanding of
visual working memory (VWM) as a distributed
network of cortical regions that operate in concert
to temporarily retain information about visual
stimuli (Christophel et al., 2017; D'Esposito & Postle,
2015; Lee & Baker, 2016). Long standing theory (e.g.,
Fuster, 1995; 1997) suggests that for this purpose, dis-
tributed cortical stores provide a multitude of neural
representations ranging from low-level sensory
imprints in sensory regions, to abstract categorical
contents and prospective action plans in more
anterior regions. Contrary to this distributed view, a
series of recent articles (Bettencourt & Xu, 2016; Xu,
2017;2018; 2020) explores the role of two specific cor-
tical sites, early visual cortex (EVC) and Intraparietal
Sulcus (IPS), and their necessity for VWM storage.
This work proposes that posterior parietal cortex
(specifically, IPS) is the main and essential site of mne-
monic retention and rejects the notion that EVC is
essential for working memory storage.

Throughout the years, a large number of lesion
studies in non-human primates and patient popu-
lations attempted to identify which region(s) of the
brain are essential for VWM storage. Early work
using this modular approach concluded that
working memory was an exclusive attribute of the
prefrontal cortex (Jacobsen, Elder, & Haslerud, 1936).
Later work, however, implicated prefrontal, parietal,
temporal and occipital areas (Farah, 1984, 1988;
Fuster & Jervey, 1981; Ghent et al., 1962; Gross & Wei-
skrantz, 1964; Malmo, 1942; Petrides, 1995; Warring-
ton & Shallice, 1969). Using single-cell recordings in
non-human primates, several groups have asked
whether mnemonic activity could be sustained
under different types of sensory distraction (Miller
et al., 1993; Miller et al., 1996; Woloszyn & Sheinberg,
2009). Initial studies found that such distracting
inputs left behavioral reports relatively intact, but
interrupted mnemonic activity in inferior temporal
regions (Miller et al, 1993), implying the unimpor-
tance of these regions for information maintenance

CONTACT Rosanne L. Rademaker@ rosanne.rademaker@gmail.com @ Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen,
Netherlands Department of Psychology, University of California, La Jolla, CA, USA Ernst Striingmann Institute (ESI) for Neuroscience in Cooperation with Max

Planck Society, Frankfurt, Germany

This article has been republished with minor changes. These changes do not impact the academic content of the article.

© 2021 Informa UK Limited, trading as Taylor & Francis Group


http://crossmark.crossref.org/dialog/?doi=10.1080/13506285.2021.1915902&domain=pdf&date_stamp=2021-07-10
mailto:rosanne.rademaker@gmail.com
http://www.tandfonline.com

426 P. IAMSHCHININA ET AL.

per se. With more sensitive methods, however, it was
later demonstrated that distractors did not fully
disrupt, but merely diminished the amount of reco-
verable mnemonic activity in these regions (Woloszyn
& Sheinberg, 2009), calling these earlier claims into
question. The resiliency of behavioral performance
in these distractor studies is a notable feature of VWM.

The latest iteration of this recurring debate sur-
rounding essential storage sites, centers on whether
mnemonic traces recovered from patterns of delay-
period fMRI data are affected by distracting visual
inputs (Bettencourt & Xu, 2016; Ester et al, 2016;
Gayet et al., 2018; Kiyonaga et al., 2017a; Lorenc et al.,
2018; Rademaker et al.,, 2019; Scimeca et al,, 2018; Xu,
2017; 2018). In the target article (Xu, 2020), a case is
made that early visual areas are nonessential to VWM
storage, based on a number of criteria: To be con-
sidered essential, an area must represent the contents
of working memory. Moreover, storage in an essential
area will not be diminished as long as people’s behavior
is unaffected. By extension, neural representations in
an essential area are expected to vary in unison with
behavioral performance. In other words, factors that
negatively impact behavior - such as visual distraction,
impoverished stimulus encoding, or inter-subject varia-
bility — will also negatively affect mnemonic represen-
tations in an “essential” area (Xu, 2020).

The search for cortical areas essential to VWM
storage has been a fruitful one, with lesion, single-
cell, and human neuroimaging studies implicating
multiple regions in multiple ways. Which leads to
the inevitable question: Is there really one essential
storage site? And — given the multitude of behavioral
goals supported by VWM, combined with diverse
strategies to achieve them - would it even make
sense for VWM to rely on a single essential storage
site? Instead of assuming a monolithic view of VWM
and searching the brain for a single essential store,
we consider VWM in light of the behavioral goals it
subserves and from which its neural implementation
follows (Boettcher et al, 2021). For the successful
completion of behavioral tasks, VWM representations
should be highly robust against external factors such
as distraction (e.g., from visual inputs; Lorenc et al.,
2021; Rademaker et al., 2015; Wildegger et al., 2015)
and should be relatively stable over time (Rademaker
et al., 2018; Shin et al., 2017). Having multiple rep-
resentations of the same mnemonic contents distrib-
uted across multiple cortical locations allows to meet

these functional demands - not only to ensure robust
retention under many possible forms of interference,
but also for the flexible application of the mnemonic
contents at any moment in case of changing task
demands.

Here, we reanalyze neuroimaging data from two
independent labs (Christophel et al., 2018; Rademaker
et al., 2019) for two distinct purposes. First, we evalu-
ate several novel results against the criteria put forth
in Xu (2020). These criteria address a strictly modular
view on VWM storage by asking whether EVC or IPS is
an “essential” storage site. Under this framework, our
results by and large favor EVC, which proves largely
robust against distraction, and covaries with behav-
ioral performance. The second, and most important
purpose of our reanalysis is to demonstrate the
impact of analysis choices on the conclusions that
might be drawn from any given data set. There are
many different sensible ways of analyzing the same
data, which all tap into different aspects of VWM-
related activity. One approach isn't necessarily
better than the other, but all interpretations are con-
strained by their own sets of underlying assumptions
and limitations. As such, the unconstrained appli-
cation of criteria to interpret findings across
different studies is problematic, considering that
different studies (often purposefully) use vastly
different analysis approaches. In sum, before
drawing broad conclusions about VWM, it is impor-
tant to carefully consider what is being tested, how
it is being tested, and what each approach can and
cannot tell us.

Methods and results: A reanalysis of data
from two independent labs

For our first reanalysis, we investigate to what extent
mnemonic representations in EVC and IPS are resist-
ant to visually presented distractor stimuli. We reana-
lyzed data from Rademaker et al. (2019) where various
visual distractors were shown while participants
remembered an orientation (Figure 1(a,b)). In a first
experiment, distractors were either randomly
oriented gratings or Fourier filtered noise stimuli,
phase-reversing on the screen for 11 s during the
memory delay. In the original analysis, there was no
consistent evidence that visual distractors reduced
the amount of decodable memory information in
EVC or IPS compared to a delay without distractors,
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Figure 1. Task & reanalysis of Rademaker et al. (2019). (a) Schematic depiction of the memory task. Participants remembered a
random target orientation over a 13-second delay, after which they rotated a white line (via button presses) to report the remembered
orientation. Behavioral error was calculated as response orientation minus target orientation (in °). A color change at the start of each
trial indicated one of three delay-period conditions. (b) During the delay of Experiment 1 there was either no distraction (dark-teal); an
11-second grating distractor (mid-teal); or an 11-second Fourier filtered noise distractor (light-teal). Experiment 2 was similar, except
that pictures of faces and gazebos were used (yellow) instead of the filtered noise. Photo used with permission (S. Itthipuripat). (c) The
strength of mnemonic representations is plotted for different distractor conditions, and was calculated using a model trained on data
from the delay period (via a leave-one-out cross-validation approach). Across large retinotopic regions of EVC (V1-V4) and IPS (IPSO-
IPS3), the strength of mnemonic representations (quantified as a projected vector mean of channel reconstructions, following an
inverted encoding modeling approach — see Rademaker et al., 2019) did not differ as a function of distractor condition in Experiment
1 (left panel). This result dovetails participants’ behavioral errors, which were also unaffected by distractors (see insert). In Experiment
2 (right panel), distractors caused a drop in the strength of mnemonic representations in EVC, but not in IPS. Results from EVC tracked
behavior, with participants performing worse in the presence of distractors (see insert). Only visually responsive voxels were included
in these analyses. Asterisks indicate significance at *p < 0.05, **p <0.01, and ***p < 0.001 (uncorrected for multiple comparisons).
Black asterisks indicate post-hoc differences in representational strength between distractor conditions, following a significant
non-parametric one-way repeated-measures within-subjects ANOVA. Colored asterisks indicate significance according to a one-
sided randomization test comparing representational strength in each condition and ROI to zero. Dots indicate individual participants
(N=6 for Experiment 1; N=7 for Experiment 2). Error bars represent =1 within-subject SEM around the mean. For more methodological
details, see Rademaker et al. (2019).

nor did distractors impact behavioral performance
(see Figure 1 in Rademaker et al,, 2019). In a second
experiment, distraction was increased by flickering
distractors on and off, and by including pictures of
faces and gazebos (instead of the noise distractor
used in the first experiment). In the original analysis,
visual distractors reduced the amount of decodable
information in EVC (but not IPS), and negatively
impacted behavioral performance (see Figure 3 in
Rademaker et al., 2019). Notably, both EVC and IPS
were analyzed on the basis of smaller retinotopically
mapped regions of interest (or “ROIs”). It has been

argued by Xu (2020) that combining these smaller
ROIs would allow for a better assessment of distrac-
tion effects per cortical area of interest. To test this,
we combined retinotopic areas V1-V4 into a large
EVC ROI. Similarly, we combined retinotopic areas
IPSO-IPS3 into a large IPS ROI. We will use such com-
bined EVC and IPS ROIs throughout.

In addition to a memory task, the Rademaker et al.
(2019) study included an independent “mapping” task
where participants directly viewed orientation stimuli
presented on the screen. This provides us with a
choice between two widely employed model training
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approaches: We can train on the memory-delay data
itself using a leave-one-out cross-validation approach.
This model training approach capitalizes on any signal
differentiating remembered orientation represen-
tations during the delay. Alternatively, we can train
on sensory-driven responses, which only captures
mnemonic signals that are similar to the activity
measured in the “mapping” task. The results of Rade-
maker et al. (2019) already illustrated that this distinc-
tion matters. Mnemonic representations in IPS were
successfully retrieved by a model trained on delay-
period data, but not by a model trained on the inde-
pendent mapping data (implying a lack of generaliz-
ability from sensory-driven to mnemonic patterns of
activity).

We start by training our model on data from the
memory delay. This model training approach closely
mimics that of an earlier study with a similar para-
digm, where strong interference effects in EVC were
observed with distraction (Bettencourt & Xu, 2016).
This approach also allows us to evaluate interference
effects in IPS — an area that yields little decodable
information under a sensory-driven training regime
(see Supplementary Figure 13 in Rademaker et al.,
2019). In Experiment 1, where no behavioral differ-
ences were observed between distractor conditions
(F2,100=0.044; p = 0.943), neither EVC (F3,100=0.52; p
=0.62) nor IPS (F;3,10=0.155; p=0.843) showed a
drop in representational strength with distractors
during the delay (Figure 1(c), left panel). This is a
clear example of the robustness of VWM, which
appears unaffected by the 11-second-long influx of
visual input. In Experiment 2, where we did observe
a behavioral deficit with distraction during the delay
(F2,120=10.154; p<0.001), a corresponding drop in
representational strength was observed in EVC
(F2,120=5.936; p=0.008), but not in IPS (F12=
0.919; p =0.418) (Figure 1(c), right panel). Considering
Experiments 1 and 2 together, we conclude that both
EVC and IPS represent mnemonic information during
visual distraction. While IPS demonstrates the stron-
gest resiliency against distraction, EVC best tracks
recall performance. Importantly, these conclusions
rest on an analysis approach that differentiates
between remembered orientations in any represen-
tational format.

What happens when we narrow our analysis
approach to include only sensory-like VWM represen-
tations, by using independent “mapping” data for

model training? In Experiment 1, we now observe a
drop in representational strength with distraction in
EVC (F2,10)=7.226; p = 0.007) despite the absence of
a measurable behavioral deficit. IPS showed no differ-
ence between distractor conditions (F(,0)=2.639;
p =0.108), which is unsurprising given the lack of
sensory-like information in IPS (the IPS representation
was significantly above chance only in the no-distrac-
tor condition, p=0.008). In Experiment 2, IPS rep-
resentations also failed to reach the threshold for
significance (all p>0.072), with no differences
between distractor conditions (F,12=0.921; p=
0.436). In EVC a drop in representational strength
with distraction was still observed (F 12 =17.828; p
<0.001), akin to the drop observed in behavior. Con-
sidering Experiments 1 and 2 together, we conclude
that only EVC represents mnemonic information in a
“sensory-like” format during visual distraction. These
EVC representations are diminished during visual dis-
traction, even in the absence of a measurable behav-
ioral deficit. Importantly, these conclusions hold for
the specific representational format that was evoked
by the sensory responses our model was trained on.
In this case, those are responses evoked by directly
viewed full-contrast orientations that were actively
attended (via an orthogonal task).

Which analysis is right? Should we only consider
representations in a format similar to that of a
sensory driven response? If so, our analysis will likely
favor areas specialized for processing sensory
inputs, such as EVC. Or should we instead remain
agnostic to the different ways in which memoranda
could be represented throughout the brain? These
questions have no unequivocal answer and depend
on the assumptions and definitions that exper-
imenters adhere to.

For our second reanalysis, we investigated to what
extent EVC and IPS represent memories that are not
immediately relevant to behavior and might therefore
be held in mind in an unattended state. For this
purpose, we reanalyzed data from Christophel et al.
(2018), where the amount of attention allocated to
different items in memory was manipulated (see
Figure 2(a)): After sequentially presenting two
different orientations, one gained immediate rel-
evance as participants were cued to report it after a
7-second delay - this was the attended memory
item (AMI). The uncued item could still be probed at
a later timepoint in the trial and was therefore not
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Figure 2. Task & reanalysis of Christophel et al. (2018). (a) Schematic depiction of the memory task. Participants are shown two sub-
sequently presented oriented gratings flanked by masks, followed by a set of two more masks (all 0.25s apart). Both target orien-
tations are initially remembered, and a first retro-cue indicates (via a red horizontal line) which of the two needs to be reported
after a 7-second delay. This cued target item is prioritized in memory (AMI = Attended Memory Item) until participants report a clock-
wise or counterclockwise orientation change after the delay. Following this response, participants see a second retro-cue indicating
which of the two target orientations will need to be reported next (the rest of the trial is not shown here for simplicity). Because there
is @ 50% chance that participants will need to “switch” and report the orientation of the previously uncued item, this item cannot be
fully discarded. Rather, this item is assumed to receive less priority during the delay (UMI = Unattended Memory Item). (b) Results from
the original paper, using within-condition model training, showed AMI representations (red) in both EVC and IPS, and UMI represen-
tations (light blue) only in IPS. Note: these results (in red and light blue) are replotted from Figure 2b in Christophel et al. (2018). To
further investigate UMI representations, our reanalysis used activity patterns evoked by the AMI to “train” the multivariate model, as
these could carry more robust information than activity patterns evoked by the UMI. Now, activity patterns measured during the delay
do reveal a UMI representation (purple) in both EVC and IPS. Hence, this approach results in more reliable model estimation (for more
analysis details, see Allefeld & Haynes, 2014). Asterisks indicate a representational strength that was significantly above zero as indi-
cated by one-tailed one-sample t-tests, with **p < 0.01, and ***p < 0.001 (uncorrected for multiple comparisons). Error bars indicate
+1 SEM (c) Across participants, there is a relationship between behavioral performance on the memory task, and the strength with
which the AMI is represented in EVC (left panel), but not in IPS (right panel). Behavioral performance (on the y-axes) is quantified as
the threshold (in degree) resulting from an adaptive staircase procedure that pins participants’ performance level at ~80% correct. A
larger behavioral threshold (i.e., larger difference between the target orientation and probe orientation) indicates poorer performance.
Each dot indicates an individual subject. Representational strength of the AMI (on the x-axes) is shown here for all N=87 individual
participants. To better visualize how representational strength is distributed across participants, a kernel density plot (normal distri-
bution with bandwidth of 0.02) is added to the x-axis. The white dotted line is the mean representational strength (matching the
height of the red bars in (b)). The grey line and grey error area indicate the slope and the 95% Cl of the brain-behavior relationship.
For more methodological details, see Christophel et al. (2018). Note: When excluding the single participant with exceptionally high
EVC representational strength (D ~ = 0.03), the brain-behavior correlation in EVC remains (r =-0.297; p = 0.005).

completely discarded - this was the unattended information about the AMI, but not the UMI - despite
memory item (UMI). In the original paper, it was participants’ ability to successfully report the orien-
shown that patterns of delay activity in IPS contained  tation of the UMI (see Figure 2(b) in Christophel et al.,
information about both the AMI and the UMI. By con- ~ 2018; replotted here in red and blue in Figure 2(b)).
trast, patterns of delay activity in EVC only contained In other words, the representation of a successfully
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remembered item was not detectable in EVC when it
was not imminently relevant. The authors nevertheless
cautioned against prematurely interpreting null results,
and already noted how analysis choices in prior work
(Lewis-Peacock, Drysdale, Oberauer, & Postle, 2012;
LaRocque, Riggall, Emrich, & Postle, 2017) had limited
the potential to find representations for unattended
items.

As with any dataset, the Christophel et al. (2018)
study lends itself to multiple analysis approaches.
The original work used data from within each con-
dition to train and test their multivariate model. This
means that AMI representations were uncovered by
training on patterns of activity evoked by attended
mnemonic contents (“AMI-AMI"). To test for UMI
representations, the model was trained on patterns
of activity evoked by unattended mnemonic contents
("UMI-UMI"). However, it is reasonable to assume
that UMI signals are weaker than AMI signals, and
that information about the UMI went undetected
when training the model on UMI signals. This would
be particularly likely in areas where UMI responses
were much weaker, but still evoked patterns similar
to AMI responses. In the current analysis, we looked
for UMI representations using the more robust AMI
representation to “train” the model. Importantly, our
new analysis uncovered UMI information in both
EVC (tgs) = 2.844; p=0.006) and IPS (te =2.671; p=
0.009) (Figure 2(b), purple). On the basis of the
present reanalysis, we therefore conclude that both
EVC and IPS maintain VWM representations for
items that are unattended. The take home message
from contrasting different model training approaches
as we do here, is that absence of evidence does not
equal evidence of absence. When it comes to unco-
vering VWM representations, some analysis
approaches may be more or less powerful than
others — depending on specifics of the experiment.

For our third reanalysis, we wanted to investigate
the relationship between representational strength
in the brain, and behavioral performance. In
Figure 1, we already allude to such a brain-behavior
relationship, with changes in behavioral performance
mirrored by representational changes in EVC across
two experiments. In this next step, we look at brain-
behavior relationships at two additional levels of
analysis, namely, across participants and within par-
ticipants (across trials). In search of a brain-behavior
relationship, it is important to consider factors that

might impact both neural and behavioral measures
in a similar direction. For example, some participants
might be more engaged (or caffeinated) than others.
Individual participants might be intermittently
drowsy or make eye blinks, potentially affecting
neural representations and behavior in unison from
trial-to-trial. Importantly, factors mediating the
brain-behavior relationship at one level of analysis
may not be able to do so at another level of analysis,
and vice versa. Thus, using multiple levels of analysis
can be a powerful approach to obtain converging
lines of evidence in support of a brain-behavior
relationship.

First, we asked whether participants who were
worse at a VWM task had weaker neural represen-
tations of memory items. While such a relationship
has been reported previously (Ester, Anderson, Ser-
ences, & Awh, 2013), the data from Christophel et al.
(2018) lends itself particularly well to investigate this
question across N=87 individual participants (Figure
2(c)). Indeed, performance on the working memory
task was correlated with the representational strength
of the attended memory item in EVC (rgs=—0.32,p =
0.003, left panel), but not in IPS (rgsy=—0.09, p=0.4,
right panel). Second, we asked whether participants’
neural representations displayed larger biases on
trials with larger behavioral errors. The Rademaker
et al. data (2019) from Experiment 1 are well suited
to address this question, as large numbers of trials
were collected from each participant. For this analysis
each individual participant’s data was split into three
bins based on the magnitude of their behavioral
errors (Figure 3(a)). For trials with counterclockwise
behavioral errors, we flipped both the sign of the
behavioral error, as well as the corresponding
channel response measured from the brain (Figure 3
(@), insert). This resulted in a metric of behavioral
errors that were all >0°. If neural biases track behav-
ioral errors, then channel response biases (calculated
as the channel response circular mean) should be >0°
also. Indeed, this analysis reveals that larger behav-
ioral errors were accompanied by stronger biases in
the memory representations in EVC (tis)=2.257; p=
0.023), but not in IPS (ts=0.116; p=0.422) (Figure
3b).

Complementary levels of analysis (across- and
within-participants) of two independent datasets
revealed a brain-behavior relationship during VWM
maintenance in EVC, but not in IPS. To illustrate why
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Figure 3. Behavioral responses are linked to neural biases. (a) For each participant in Experiment 1 (Rademaker et al., 2019) data were
split into 3 equally sized bins of 108 trials each, based on the magnitude of behavioral errors. Thus, the 3 bins represent best, medium,
and worst behavioral performance quantiles, shown here in three shades of green. The main panel shows the frequency of absolute
behavioral errors for an example participant, split into 3 performance bins, with numerical values corresponding to the mean error in
each bin. In addition to measuring a behavioral error, on each trial we estimate the brain’s mnemonic representation by applying a
multivariate model that yields a channel response function (for more details, see Rademaker et al., 2019). Channel response functions
from 2 example trials are shown in the insert. If the mean (or “bias”) of a channel response function changes in accordance with the
behavioral error, then trials with larger behavioral errors are expected to have more strongly biased channel responses. To test this, for
all trials with counterclockwise behavioral errors, the sign of both the behavioral error and the corresponding channel response func-
tion were flipped. In our example (insert), the dark-green channel response comes from a trial with a behavioral error of —16° and is
therefore flipped (compare the left and right panels of the insert). The medium-green channel response comes from a trial with behav-
ioral error of 3.5° and is not flipped. In this example, the channel response bias on the trial in dark green is indeed larger than that of
the trial in medium green (where the behavioral error was also smaller). (b) There is a relationship between behavioral performance
and mnemonic representations in EVC, but not in IPS. Specifically, in EVC the channel response bias (y-axis) was larger with poorer
performance, as supported by a permutation test against a null model. In this test, bin assignment was shuffled on every permutation
(of 1000), slopes were calculated (positive slopes indicate a larger channel response bias with larger behavioral error), and a t-statistic
across participants was calculated, resulting in a null-distribution of t-statistics. A second permutation test was constructed to test for
a brain-behavior relationship within each performance bin. Here, we broke the correspondence between the sign of the behavioral
error and the flip of the channel response function, after which we calculated a t-statistic across subjects on every permutation. We
only observed a significant channel response bias in EVC for the worst-performance bin. (c) The oblique effect in VWM for orientation.
In the best performance bin (leftmost panel), trials with cardinal memory targets (around 0° and 90°) were more frequent. In other
words, cardinal orientations tended to result in smaller behavioral errors, which in turn were associated with a smaller neural bias.
Conversely, trials in the worst performance bin (rightmost panel) were frequently associated with oblique memory targets (around
45° and 135°). In other words, oblique orientations tended to result in larger behavioral errors, which were associated with a
larger neural bias. All three plots use kernel density estimation (normal distribution with bandwidth of 5°) (d) To verify the generality
of the stimulus-based effects shown in (c), we split all behavioral responses from the Christophel et al. (2018) task by target orien-
tation. For each of the 12 possible target orientations (x-axis) the percentage correct was calculated (y-axis). A clear oblique effect is
shown, with highest performance for targets around cardinal orientations, and lowest performance for oblique targets. Dashed lines
indicate the 95% Cl.
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having converging lines of evidence is important, we
will consider one factor that might facilitate analo-
gous changes in brain and behavior: When looking
at VWM for orientation within individual participants
(Rademaker et al, 2019), trials that yielded the
highest behavioral performance were trials with
more cardinal orientations as targets, whereas trials
that yielded the lowest behavioral performance
were trials with more oblique target orientations
(Figure 3(c)). This phenomenon, known as the
oblique effect (Appelle, 1972), might contribute to
the brain-behavior relationship shown in Figure 3
(b). Importantly, while an oblique effect was also
present in the across-participant data from Christo-
phel et al. (2018) (Figure 3(d)), it cannot contribute
to the brain—behavior correlation at this level of analy-
sis because trial-by-trial differences in orientation are
averaged out. Vice versa, factors that might contrib-
ute to brain-behavior correlations across participants
may not play a role when analyzing data within indi-
vidual participants.

This third reanalysis demonstrates how a thorough
understanding of analysis choices, and their impli-
cations at different levels, can further our understand-
ing of the VWM system via converging lines of
evidence. At the same time, it highlights how results
across different studies cannot always be directly
compared when the same question is approached
at different levels of analysis.

Discussion

From the results presented here it becomes clear that
analysis choices have a non-trivial impact on the sen-
sitivity to retrieve mnemonic content from delay
activity patterns. Different analysis approaches tap
into different aspects of VWM-related activity, and
the advantage of one analysis choice over the other
often comes down to the specific research question
being tested.

In our first reanalysis, we explored VWM represen-
tations in EVC and IPS during visual distraction, using
two widely employed model training approaches.
First, training the model on the responses from the
memory delay revealed mnemonic information in
EVC and IPS, with IPS demonstrating the strongest
resilience against distraction, and EVC best tracking
changes in behavioral recall across two different
experiments. Second, when training the model on

the sensory-driven responses evoked by an indepen-
dent “mapping” task, mnemonic representations
were found in EVC but not in IPS. Moreover, represen-
tations in EVC were reduced with distraction, even in
the absence of a behavioral deficit. If we define VWM
as including any representation pertaining to delay
period activity (i.e., we remain agnostic to the type
of signals contributing to VWM storage), then training
a model on data from the memory delay is the most
appropriate approach. If we restrict our definition of
VWM to representations that generalize from
sensory-driven responses, then training a model on
sensory-driven responses is the more appropriate
choice. Neither analysis approach is inherently
better than the other; and each approach can be pur-
posefully applied to address different research ques-
tions (e.g., to test different representational formats).

In our second reanalysis, we investigated VWM rep-
resentations during attentional disengagement, and
demonstrated how results can depend on the robust-
ness of the signals used for model training. In this
case, training on stronger mnemonic representations
of currently prioritized (“attended”) memory items
helped uncover weaker mnemonic representations
of “unattended” memory items. Using this approach,
unattended memory items were uncovered in both
EVC and IPS. By contrast, when training the model
on signals evoked by the unattended items them-
selves, such items could only be detected in IPS.
This result showcases how a previous null finding in
fact depended on analysis choice and cautions
against prematurely interpreting null results as evi-
dence of absence (note: This caution extends more
generally beyond analysis choices, as there are
many additional reasons why existing neural rep-
resentations can remain undetected from VWM
delay activity (Chota & Van der Stigchel, 2021)).

In our third reanalysis, we showed that mnemonic
representations in EVC (but not IPS) covaried with
behavioral performance measured in two different
experiments and at two different levels of analysis:
across participants and within participants (i.e.,
across trials). Many factors might contribute to
brain-behavior relationships. Here we used the
oblique effect to demonstrate how one such factor
can have different contributions at different levels of
analysis. Evaluating results across multiple comp-
lementary levels of analysis can strengthen our under-
standing of the brain-behavior relationship.



The results of the reanalyses presented here
provide important additional detail to the already
existing studies in which the data were originally pub-
lished (Christophel et al., 2018; Rademaker et al.,
2019). They demonstrate that both EVC and IPS are
involved in VWM storage but in different ways. One
possible interpretation is that these brain regions
might store mnemonic contents in different formats,
as a result of which particular analysis choices might
differentially affect the results from these areas. Our
findings are in line with the view that the same mne-
monic contents (e.g., memory for orientation) can
undergo multiple neural implementations distributed
across multiple locations (Lee, Kravitz, & Baker, 2013).
Thereby, these reanalyses support the idea of the
VWM system as a cortical network where no single
brain area plays the role of monolithic store under
every circumstance (Lorenc & Sreenivasan, 2021;
Teng & Postle, 2021). However, involvement of some
areas could be critical for specific aspects of
different tasks. For instance, it's been suggested that
visual cortex might serve as a local comparison
circuit, ideally suited for matching mnemonic con-
tents to the sensory environment (Rademaker et al.,
2019; Xu, 2020). At the same time, it is unlikely that
memory for visual stimuli solely relies on parts of
cortex specialized in visual processing. Some visual
stimuli are readily verbalized, such that little visual
trace may persist (e.g., Yan et al,, 2021), and represen-
tations of visual stimuli outside of visual cortex are
abundant (Brissenden et al., 2021; Christophel et al.,
2017; Ester et al,, 2015; Lee & Baker, 2016). VWM is
likely mediated through a larger number of regions,
where each region is functionally distinct and essen-
tial in its own right. Such an architecture allows
VWM to best serve behavior, by ensuring robust
maintenance of visual information, and allowing for
the flexible application of mnemonic contents under
varying task requirements.

The above shows how our results can be inter-
preted in the context of a distributed network of cor-
tical regions. Instead, if we assume a singular essential
memory store, and interpret our findings according to
the criteria put forth in Xu (2020), interpretation
becomes fraught. To illustrate we will first look at
brain-behavior relationships — deemed a necessary,
but not sufficient criterion for an area to be con-
sidered “essential” (Xu, 2020). Our first reanalysis
showed EVC, but not IPS, tracking behavior across
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two experiments when training a model on memory
delay period data. Based on this, one could conclude
that EVC is essential for VWM storage and, by exten-
sion, that IPS is not. But when using sensory-driven
responses for model training instead, EVC no longer
tracked behavior, and IPS no longer represented mne-
monic information at all. Based on this, neither EVC
nor IPS are essential for VWM storage. In our third rea-
nalysis we again showed that EVC, and not IPS,
tracked behavior (both across and within partici-
pants), re-implicating EVC as the essential store.
Through this exercise, one inevitably notices a vola-
tility in interpretation, depending on analysis choice.
Conclusions based on the other criteria proposed by
Xu (2020) suffer from a similar volatility when evalu-
ated against our results: Essential areas must rep-
resent VWM contents, which IPS does in one
analysis but not another. Essential areas must also
not show diminished storage as long as behavioral
performance is unaffected, which EVC does in one
analysis but not another. Thus, a strictly modular
interpretation of our results based on these criteria
cannot account for the complexity of brain mechan-
isms involved in VWM.

Beyond being too narrow in scope, we see another
major concern in the unrestrained application of
these criteria (Xu, 2020) to the VWM literature.
Namely, the criteria themselves seem to be irrefuta-
ble. To illustrate let’s again look at the brain-behavior
relationship. While our results would by and large
favor EVC as the “essential” store, we must still
address the “sufficiency” clause: According to Xu
(2020), mnemonic contents in early sensory areas
may covary with behavioral performance as a result
of feedback from a higher-order “essential” area.
Thus brain-behavior correlations in EVC are not
sufficient to prove its “essentialness”. Few would
argue that mnemonic signals in EVC are anything
other than feedback driven, which means we should
entirely disregard brain-behavior relationships in
EVC when searching for an essential store. By exten-
sion of the Xu (2020) argument, however we could
also posit that mnemonic contents in IPS may
covary with behavioral performance as a result of
feedforward signals from a lower-order “essential”
area. In sum, whether or not the brain-behavior cri-
terion is fulfilled seems to matter little, as one could
always disregard these findings using this argument.
More importantly, using the potential of feedback or
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feedforward inputs as a means to disregard findings
in any one area distracts from the very real possibility
that the interplay between areas might be an essen-
tial way by which memory is upheld in the human
brain.

Taken together, considering VWM as supported by
a distributed cortical network has the potential to
account for both a flexible storage-reconfiguration
based on task demands, and stability of mnemonic
contents in the face of various potential sources of
interference. A strictly modular viewpoint on VWM
accounts for neither. Moreover, evaluating our
results against criteria used to determine a single
“essential” cortical storage site yielded ambiguous
conclusions at best. Such a narrow definition of
VWM may limit our comprehension of the VWM
system as a whole. Instead, from a distributed VWM
viewpoint, memoranda are stored within multiple
interconnected cortical sites, in multiple formats.
Thus, rather than asking which area is essential to
VWM, the question now becomes under what circum-
stances an area is of particular importance to VWM
storage. Here we demonstrated that through careful
consideration of analysis choices and the principles
they test, we can gain insight into potential represen-
tational formats, their generalizability, and relation-
ship with behavior.

Diversity Statement

Recent work in several fields of science has identified
a bias in citation practices such that papers from
women and other minorities are under-cited relative
to the number of such papers in the field (Caplar
etal, 2017; Dion et al., 2018; Dworkin et al., 2020; Mal-
iniak et al., 2013; Mitchell et al., 2013; Zhou et al,,
2020). We seek to proactively consider choosing refer-
ences that reflect the diversity of the field in thought,
form of contribution, gender, and other factors. We
obtained predicted gender of the first and last
author of each reference by using databases that
store the probability of a name being carried by a
woman (Dworkin et al,, 2020; Zhou et al., 2020). By
this measure (and excluding self-citations), our refer-
ences contain the percentages of (first/last authors):
1. woman/woman 2. man/woman 3. woman/man
4. man/man 5. unknown categorization. This
method is limited in that (a) names, pronouns, and
social media profiles used to construct the databases

may not, in every case, be indicative of gender iden-
tity and (b) it cannot account for intersex, non-
binary, or transgender people. We look forward to
future work that could help us to better understand
how to support equitable practices in science. Exclud-
ing self-citations to the authors of this paper, our
references contain (first/last authors): 10% woman/
woman, 22% woman/man, 10% man/woman and
36% man/man. Single author papers accounted for
10% (man) and 12% (woman) of citations.
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