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Previous studies have suggested that people can maintain prioritized items in visual working memory for
many seconds, with negligible loss of information over time. Such findings imply that working memory
representations are robust to the potential contaminating effects of internal noise. However, once visual
information is encoded into working memory, one might expect it to inevitably begin degrading over time, as
this actively maintained information is no longer tethered to the original perceptual input. Here, we examined
this issue by evaluating working memory for single central presentations of an oriented grating, color patch,
or face stimulus, across a range of delay periods (1, 3, 6, or 12 s). We applied a mixture-model analysis to
distinguish changes in memory precision over time from changes in the frequency of outlier responses that
resemble random guesses. For all 3 types of stimuli, participants exhibited a clear and consistent decline in the
precision of working memory as a function of temporal delay, as well as a modest increase in guessing-related
responses for colored patches and face stimuli. We observed a similar loss of precision over time while
controlling for temporal distinctiveness. Our results demonstrate that visual working memory is far from
lossless: while basic visual features and complex objects can be maintained in a quite stable manner over time,
these representations are still subject to noise accumulation and complete termination.

Public Significance Statement
The ability to retain visual information over brief delays is critical for accurate visual performance.
Numerous studies have claimed that items in visual working memory are immune to temporal decay.
This is surprising, given that information maintained in working memory is no longer tethered to the
original perceptual input. One could rightfully wonder how any biological system would be able to
achieve perfect retention under such circumstances. Here, we show that working memory for
individual orientations, colors, and faces, undergoes gradual decay over time, even when occurrences
of complete memory failure are taken into account. Our statistical and model comparison analyses
provide compelling evidence that information represented in visual working memory accumulates
noise over time, leading to a gradual but inevitable loss of visual precision.
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Information about a recently viewed visual object can be ac-
tively maintained to fulfill perceptual and cognitive goals, such as
when comparing one visual item to another, or when planning a
series of visually guided actions (Hayhoe, Aivar, Shrivastavah, &
Mruczek, 2002; Hayhoe, Shrivastava, Mruczek, & Pelz, 2003;
Hollingworth, Richard, & Luck, 2008). To perform these tasks,
visual information must be stored with high fidelity and protected
against interference and the effects of time. Visual working mem-
ory serves to support these functions, allowing for the flexible and
active maintenance of precise visual information over brief delays
to provide online support for one’s immediate cognitive goals.

A seemingly simple issue, regarding the fate of visual memories
as they evolve over time has proved equivocal. Intuitively, one
might expect that once a stimulus is gone from view, that stimulus
cannot be maintained perfectly by the mind alone—without direct
perception to keep it grounded. Nevertheless, studies assessing
visual memory over time have generally demonstrated its high
fidelity and robustness to decay over time.

In earlier work, researchers applied psychophysical procedures
to measure discrimination thresholds for simple visual features,
varying the temporal delay between the two items to be compared.
For example, Regan and Beverley (1985) found negligible loss of
visual precision in the ability to discriminate between pairs of
orientations presented either 1 s apart or 10 s apart, implying that
visually precise information can be sustained by the central ner-
vous system in a lossless manner over this interval. Many subse-
quent studies have made similar reports of finding no loss of visual
resolution over time when assessing working memory for spatial
frequency (Bennett & Cortese, 1996; Huang & Sekuler, 2010;
Magnussen, Greenlee, Asplund, & Dyrnes, 1991; Regan, 1985),
motion direction (Blake, Cepeda, & Hiris, 1997), motion velocity
(Magnussen & Greenlee, 1992), and even memory for complex
stimuli such as faces (Banko, Gal, & Vidnyanszky, 2009). Al-
though these claims are based on reporting a null difference, they
do support the notion that visual working memory is quite stable
and robust over time.

On the other hand, other studies have reported finding modest
but reliable decrements in discrimination performance over time
when evaluating working memory for orientation (Magnussen,
Landrø, & Johnsen, 1985), vernier offset (Fahle & Harris, 1992),
contrast (Lee & Harris, 1996; Magnussen, Greenlee, & Thomas,
1996), and color (Nilsson & Nelson, 1981). These conflicting
findings across studies present a challenge for understanding the
processes by which visual representations are sustained over time
in working memory.

Although these previous studies relied on established psycho-
physical procedures, multiple factors complicate their interpreta-
tion. Some studies probed memory with a restricted range of test
stimuli, for example by testing the discrimination of spatial fre-
quencies centered about a particular reference frequency (with
modest jitter applied to the standard reference). As a consequence,
delayed discrimination thresholds, in what was deemed a sensory
memory task, may have benefited from learning of a “standard” or
“criterion” for making these forced-choice discriminations. Such
effects of criterion learning, which can last over many trials or
even over days, have been shown to contribute to delayed discrim-
ination performance for visual properties such as spatial frequency
(Lages & Treisman, 1998; Lages & Paul, 2006) and line separation

(Morgan, Watamaniuk, & McKee, 2000). Thus, criterion learning
could in some cases explain lossless working memory.

Most previous attempts to characterize the time course of visual
working memory suffer from an even greater limitation, namely
the inability to distinguish between whether the precision of visual
working memory for an item gradually decays over time, or
whether on a subset of trials, memory for an item is abruptly lost
at some point during the maintenance period—due to lapses of
attention, loss of motivation, or any other factor. For example, if
participants have a small but nonzero probability of experiencing
an attentional lapse within any fixed time interval, trials with
longer delay intervals will lead to more frequent lapses. This
would consequently lead to elevated estimates of discrimination
thresholds at longer delays. Thus, attentional lapses would be
expected to impair working memory performance as a function of
temporal delay, in both delayed discrimination tasks (Magnussen
et al., 1985; Vogels & Orban, 1986) and change detection tasks
(Phillips, 1974). Most previous studies of working memory have
not adequately distinguished between these two possibilities,
namely whether items in working memory gradually degrade over
time because of accumulating noise or whether they are more
likely to be dropped from memory over longer delay periods.

A study by Zhang and Luck (2009) directly addressed the latter
issues by applying a mixture model analysis that assumes separate
parameters to estimate the precision of working memory for suc-
cessfully maintained items and the likelihood of complete memory
failure. On each trial, participants were presented with three ran-
domly chosen colors to maintain over a variable delay period, after
which they were cued to report an item from memory by indicating
the remembered color on a continuous color wheel. This method of
continuous report allowed for the construction of error distribu-
tions, which could then be fitted by assuming a mixture model,
comprised of a von Mises distribution to estimate the precision of
responses for successfully maintained items, and a uniform distri-
bution to estimate the frequency of trials involving random guess-
ing. The authors found that guessing-related responses became
more prevalent at longer delays but that the precision of visual
working memory remained stable over time. These results were
taken to suggest that visual information does not gradually degrade
over time, but rather, is abruptly lost from working memory in a
probabilistic all-or-none manner.

This study addressed major shortcomings of previous work, but
how should one interpret a reported null effect of temporal delay
on memory precision? One possibility is that working memory
precision indeed remains highly stable over time, but another
possibility is that considerable statistical power is needed to detect
the presence of these effects (Skottun, 2004). A substantial amount
of internal noise may need to accumulate over an extended period
to result in detectable changes in memory precision, especially if
the magnitude of this independent noise source is small in com-
parison to the noise level associated with the initially encoded item
in working memory at the start of the delay. Such a prediction
arises from the simple fact that the pooled variance of two inde-
pendent noise sources will reflect their sum. For example, if the
standard deviation associated with memory for an item was equiv-
alent to 20° at Time 1, and an additional 10° of independent noise
accumulated between Time Points 1 and 2, then memory perfor-
mance at Time 2 would result in a standard deviation of 22.36°
(i.e., the square root of 202 � 102) – a value only modestly greater
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than that observed at Time 1. This example illustrates how a
modest level of independent noise, added to an existing noisy
representation, may prove challenging to detect. If the same
amount of independent noise were added to a memory represen-
tation that was initially more precise, with say a standard deviation
of 10° at Time 1, then memory performance at Time 2 would be
degraded by a greater proportional extent (with a variance of 200°
or standard deviation of 14.14°).

Thus far, we have considered the disruptive effects of attentional
lapses and the degree of precision loss that would be expected to
occur due to noise accumulation. However, another potential cause
of delay effects could be interference in the time domain. The
“temporal interference model” posits that representations in mem-
ory will become less distinct as they recede into the past, losing
temporal distinctiveness. Presumably, this is because of logarith-
mic psychological compression of time (Brown, Neath, & Chater,
2007). If the delay duration were to vary across trials in a study
while the interval between trials remains fixed, then temporal
distinctiveness will systematically covary with delay duration.
Consider a trial with a long memory delay period: as the sample
item recedes into the past it will become less distinguishable from
the sample item that appeared on the trial before it. A recent study
of visual working memory has found some evidence to support the
temporal distinctiveness hypothesis (Souza & Oberauer, 2015).
Thus, while worse performance at longer delays could be due to
memory decay, decay may be conflated with the loss of temporal
distinctiveness, which could lead to greater competition for re-
trieval between items remembered in the past.

The primary goal of our study was to provide a rigorous test of
whether information maintained in visual working memory is
subject to gradual loss of precision over time. That guess rates
increase at longer delays has been fairly well established (Park, Sy,
Hong, & Tong, in press; Zhang & Luck, 2009), and if one assumes
that lapses of attention can lead to complete memory failure, an
increase in guess rate is indeed expected as a function of delay
duration. However, such catastrophic lapses might occur in paral-
lel with a more gradual process of decay that is much harder to
detect (see also supplementary Table 1). To enhance sensitivity for
detecting potential effects of temporal delay on precision, we
evaluated visual working memory for single items, which is known
to lead to superior encoding precision and lower rates of memory
failure when compared with memory for multiple items (Bays &
Husain, 2008; Pratte, Park, Rademaker, & Tong, 2017; Zhang &
Luck, 2008).

An important consideration is that one’s ability to detect any
inherent change in memory precision, based on a mixture model
analysis, will depend greatly on the baseline level of memory
precision as well as the overall rate of guessing. Statistical power
to detect small changes in memory precision will be best when
baseline precision is high (i.e., low standard deviation) and guess
rates are low. To gain a quantitative appreciation of this, we
performed a simulation analysis, generating data for in-memory
responses with an initial standard deviation of 10°, 20° or 30° for
Time 1, and a proportional increase in standard deviation of 10%
or 20% for Time 2. The probability of random-guess responses
was varied from 0 to 0.5. We fit the mixture model to the simulated
data (100 trials per delay condition), which we repeated for 1000
simulations. Figures 1A and 1B show estimated power for detect-
ing a statistical difference following 10% and 20% increases in

standard deviation, respectively, assuming a sample size of N � 12
and two-tailed alpha of 0.05. Not only is power greatest when
baseline standard deviation is low and guessing is at a minimum,
the impact of baseline precision becomes magnified as guess rates
increase much above 0. In Figure 1C, we plot the estimated
parameters for standard deviation at three levels of guessing (pU)
for the data simulated in Figure 1B; the amount of overlap between
error bars for Time Points 1 and 2 (T1 and T2) relates to the
difficulty/ease with which the impact of delay duration can be
detected. This power analysis clarifies our motivation for testing
working memory for single items, namely, to ensure that guess
rates and baseline standard deviation will be as low as possible.
This will improve our ability to detect any change in standard
deviation, should memory precision truly decline as a function of
delay duration.

We investigated working memory for basic visual features of
orientation and color (Experiments 1A and 2, respectively), and
performed a control study of memory for orientation to address
potential concerns regarding temporal distinctiveness (Experiment
1B). We also characterized the effects of delay duration on visual
working memory for complex stimuli, using a continuous face
stimulus set (Lorenc, Pratte, Angeloni, & Tong, 2014) to deter-
mine the generality of our findings. Across all three types of
stimuli, we observed highly consistent effects of declining memory
precision as a function of temporal delay, as well as modest
increases in the frequency of random-guess responses that reached
statistical significance in some cases. These effects were further
confirmed by a model comparison analysis that evaluated the
likelihood that participants’ working memory performance arose
from a loss of memory precision over time, as compared with other
types of loss such as an increased frequency of complete forget-
ting. Our results provide compelling evidence that information
represented in visual working memory accumulates noise over
time, leading to a gradual but inevitable loss of visual precision.

Experiment 1A

In Experiment 1, we evaluated memory fidelity for the orienta-
tion of a single grating across a range of delay durations. Orien-
tation is a fundamental visual feature that is prominently repre-
sented in early visual areas, and varies in a continuous manner in
a circular feature space. A major advantage of testing visual
working memory in a full circular feature space is that effects of
expectation or criterion learning (Lages & Treisman, 1998) can be
eliminated, as any possible feature value within the space can
appear as the sample to be remembered. These properties readily
allow for evaluation of the precision with which specific orienta-
tion values can be maintained over time, and are commonly tested
in studies of visual working memory (Luck & Vogel, 1997; Foug-
nie, Asplund, & Marois, 2010; Fougnie, & Alvarez, 2011; van den
Berg, Shin, Chou, George, & Ma, 2012; Rademaker, Tredway, &
Tong, 2012; Rademaker, Bloem, De Weerd, & Sack, 2015; Wilken
& Ma, 2004). We applied a mixture-model analysis which as-
sumed that successful maintenance would lead to modest errors
centered around the feature value of the sample stimulus, while
occasional trials involving complete memory failure would be
well-described by a uniform-guessing distribution to account for
the probability of memory failure in each delay condition (Zhang
& Luck, 2008; Pratte et al., 2017).
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In Experiment 1A, we tested temporal delays of 1, 3, 6, and 12
s using a mixed trial design with a fixed intertrial interval. This
study found that visual precision progressively declined as a func-
tion of delay duration.

Method

Participants. Twelve healthy volunteers participated at Maas-
tricht University under the approval of the standing ethical com-
mittee of the local Psychology and Neuroscience department. All
participants reported normal or corrected-to-normal vision, and
provided written informed consent. With the exception of one of
the authors (RR), participants were naïve to the purpose of the
study and received monetary reimbursement for their time. Partic-
ipants’ ages were between 21 and 36 (8 female).

Stimuli. Participants viewed the stimuli in a dark room on a
luminance linearized CRT monitor with 1,280 � 1,024 resolution
with 60 Hz refresh rate. Visual stimuli were generated using
MATLAB and the Psychophysics toolbox (Brainard, 1997; Pelli,
1997). Participants were seated at a viewing distance of 57 cm, and
were instructed to maintain fixation throughout, aided by a chinrest

and a central fixation bull’s eye (0.5° diameter). The orientation
stimuli consisted of linear sine-wave gratings (3° diameter; spatial
frequency 2 c/°; phase randomized; 20% Michelson contrast with
an added 10% contrast jitter) that were centrally presented on a
uniform gray background with the same mean luminance (40.8
cd/m2) The probe stimulus consisted of two line segments (each
0.025° wide and 0.125° long, separated by a 3° gap) indicating a
single orientation, and the white bull’s eye (0.5° diameter) at
fixation. The line could be rotated around the bull’s eye using the
mouse, allowing participants to replicate the memorized orienta-
tion.

Procedure. Participants were presented with a randomly
chosen orientation (between 0° and 180° in 1° steps) for 200ms
on each trial, followed by a randomly intermixed delay condi-
tion of 1, 3, 6, or 12 s (Figure 2A, top row). After the delay
participants were presented with a probe in the form of an
interrupted line, with an initially random orientation. Partici-
pants used a mouse to rotate the line to report the orientation in
memory as precisely as possible. Once satisfied with their
response, participants clicked the mouse to continue to the next
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Figure 1. Challenges of detecting gradual decay with mixture model analysis. A simulation analysis was
performed assuming a baseline standard deviation of 10°, 20°, or 30° at Time 1 and a proportional increase in
standard deviation of 10% (Panel A) or 20% (Panel B) by Time 2. Statistical power to detect a change in standard
deviation is optimal when baseline standard deviation is low and guess rates approach 0. Power declines as a
function of increasing guess rate, particularly when baseline standard deviation is moderate or high. Panel C:
Estimated standard deviation values for the simulation in 1B, plotted for guess rates of 0, 0.2 and 0.4. While the
mixture model captures the true standard deviation quite well, these estimates become more variable with larger
baseline values of standard deviation and at higher rates of guessing. Error bars show �1 standard deviation.
Note that no variability in effect size was introduced in this analysis; expected power would be lower if the
magnitude of change in standard deviation varied across participants. Transparent solid and dashed lines in Panel
C represent true standard deviation at Time Points 1 and 2, respectively. Please see the online article for the color
version of this figure.
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trial 1 s later. For each participant, a total of 100 trials per delay
condition were collected.

Analysis. For each delay condition, we first calculated the
circular variance (V) – a descriptive statistic measuring the overall
dispersion of responses (Mardia & Jupp, 2000). The circular
variance was calculated with respect to the true value rather than
the mean, as follows:

V � 1
n�i�1

n

�1 � cos (�i � �)�

where � is the true value of the stimulus and � is the reported
value. We also calculated the average response time for each
condition of interest. Next, a distribution of response errors was
obtained by calculating the difference between sample orienta-
tion and the reported orientation. Relevant characteristics from
these response error distributions were estimated by fitting a
‘mixture-model,’ previously proposed to describe various as-
pects of the working memory system (Zhang & Luck, 2008).
The mixture-model assumes that a response error distribution
can be described by a mixture of two distributions: A von Mises
distribution (i.e., the circular analog of the Gaussian distribu-
tion) when the probed item was stored in memory, and a
uniform distribution when the item was lost and a random

response was made. The von Mises distribution is represented
by two parameters, the distribution mean (�) indicating any
systematic shift of the distribution with respect to the correct
response, and the standard deviation of the distribution, which
is believed to be inversely proportional to memory precision.
For these analyses, we assumed that the mean of the distribution
was centered at the value of the true stimulus to be remembered.
The uniform distribution is represented by one parameter, pU,
which determines the height of the uniform distribution, indic-
ative of the probability of memory failure.

Data analyses were performed in MATLAB using custom func-
tions, as well as circular data analysis tools provided by the Bays
lab (Bays, Catalao, & Husain, 2009) and the Circular Statistics
Toolbox (Berens, 2009). We used a maximum likelihood method
to estimate the standard deviation and pU parameters for each
delay condition from each participant. A repeated-measures anal-
ysis of variance was then performed on the estimated parameters,
with the delay interval as the within-subjects factor. Post hoc t tests
were uncorrected to provide a more sensitive measure of where
differences found with analyses of variance (ANOVAs) might
arise from.

Power analysis. In Experiment 1A, our goal was to test for
loss of precision in visual memory over temporal delay. As

Figure 2. Trial sequence and stimuli. Panel A: In Experiment 1A (top row) participants viewed a randomly
oriented grating for 200 ms at the start of each trial, and remembered it as precisely as possible for a duration
of 1, 3, 6, or 12 s. After the delay, participants were presented with a randomly oriented probe stimulus, which
they could rotate by using the computer mouse to report the orientation from memory. In Experiment 2 (middle
row), participants first viewed three digits that they repeated aloud throughout the trial to induce articulatory
suppression. After a brief delay, they were shown a randomly colored circular patch for 200 ms, and had to
maintain this color information for 1, 3, 6, or 12 s. After the delay, color memory was probed by showing
participants a color wheel. A white response circle was shown on the wheel, and once participants started turning
the response knob a color patch appeared centrally. Participants could move the white response circle along the
color wheel (simultaneously changing the color of the central patch) by turning the response knob until they were
satisfied with their response. Finally, participants had to report the three rehearsed digits using a computer
keyboard. Experiment 3 (bottom row) evaluated visual working memory for 3D rendered face images. The
probe appeared centrally, at the same location as the stimulus, and turning the knob made the face morph
through face space to arrive at the desired response. Panel B: Examples of face stimuli that comprised a
continuous face space, generated via rendering of 3D faces that varied according to age and gender. For
illustrative purposes, the dimension of the stimuli above are not to scale—see the text for actual sizes. Please see
the online article for the color version of this figure.
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mentioned in the introduction, it may be challenging to detect a
modest level of independent noise added to an existing noisy
representation, with expected effect sizes in the 2°– 4° range
(assuming 10° of independent noise, and depending on the
noisiness of the existing representation). To be sensitive to such
effect sizes, we decided a priori to Test 12 participants for this
first experiment, based on our experience of testing similar
numbers of participants in previous studies (Lorenc et al., 2014;
Pratte et al., 2017; Rademaker et al., 2012, 2015). Next, we
calculated the statistical power of detecting a significant in-
crease in the standard deviation, given our sample size and the
empirically observed effect size.

Utilizing all the data from Experiment 1A, a slope analysis of
the change in the standard deviation parameter as a function of
delay revealed a statistically significant slope of � 0.17° sd/s
(SEM � 0.04° sd/s). For more on this analysis see our section
on “Analysis of Rate of Precision Loss Across Experiments”.

Power was calculated for a 1-sample t test against the null
hypothesis of slope � 0, and yielded a Cohen’s d � 1.345.
Assuming similar rates of change in standard deviation for
colors and faces, we considered a sample size of 	12 partici-
pants for each of the following experiments to provide suitable
power.

Results

Results for Experiment 1A are shown in Figure 3. The error
histograms (Figure 3A) suggest that reports became less accurate
as a single orientation had to be retained over longer delays. To
quantify the overall magnitude of memory error, we first calcu-
lated the circular variance (V) of response errors in each delay
condition (Figure 3B, left most panel, in black, left y-axis). Note
that either a decline in memory precision or an increase in the
proportion of random guesses will lead to an increase in the
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circular variance of response errors, so for our purposes this metric
will serve as a composite measure.

A repeated-measures ANOVA indicated that the circular vari-
ance increased with longer retention durations, F(3,33) � 8.62; p 

.001. Paired t tests (uncorrected) showed that this difference was
significant between delays of 1 and 6 s, t(11) � 3.9, p � .003; 1 and
12 s, t(11) � 3.44, p � .006; 3 and 6 s, t(11) � 2.73, p � .02; and
3 and 12 s, t(11) � 3.14, p � .009. The average time that partic-
ipants took to respond during the various delay conditions is also
shown in the leftmost panel of Figure 3B (in gray, right y-axis).
Response times were slower following longer delay durations as
indicated by a repeated-measures ANOVA, F(3,33) � 5.128; p �
.005. Particularly, response times were longer when the delay was
12 s, compared with when the delay was 1 s, t(11) � 2.7; p � .02;
3 s, t(11) � 2.2; p � .05; or 6 s, t(11) � 2.42; p � .03.

Next, we used a mixture-model to decompose the error distri-
butions into the standard deviation of response errors for success-
fully maintained items and the probability of uniform guessing-
related responses (pU). The middle panel of Figure 3B shows the
effect of delay on the precision of visual working memory, where
increases in standard deviation over time indicate a gradual loss of
precision. A repeated-measures ANOVA confirmed that standard
deviation became larger at longer delay durations, F(3,33) � 11.86;
p 
 .001, with a highly significant linear trend, F(1,11) � 24.34;
p 
 .001. Paired t tests demonstrated significant differences be-
tween delays of 1 and 6 s, t(11) � 4.03; p � .002; 1 and 12 s, t(11) �
4.43; p � .001; 3 and 6 s, t(11) � 2.34; p � .03; and 3 and 12 s,
t(11) � 4.2; p � .002.

Although the mean proportion of guessing responses appeared
to increase slightly as a function of delay duration (Figure 3B,
right), estimated rates of guessing were very low, ranging from just
1–2% of trials across the different delay conditions. These results
indicate that participants remained focused on the task on the vast
majority of trials. A repeated-measures ANOVA showed no reli-
able difference between conditions; repeated-measures ANOVA,
F(3,33) � 1.12; p � .354, nor was there a significant linear trend
that might imply increased guessing with longer delay durations,
F(1,11) � 1.39; p � .263.

Experiment 1B

In Experiment 1B, we performed a replication study to control
for effects of temporal distinctiveness (cf. Souza & Oberauer,
2015). Although it might have been preferable to compare ex-
tremely short and long durations in this study to maximize sensi-
tivity, we focused on delay durations of 1 s and 4 s, as longer
durations would have required prohibitively long intertrial inter-
vals. Even with this 4-s period for the long duration condition, an
intertrial interval of up to 28 s was needed to maintain a constant
level of distinctiveness across trials.

Method

Participants. Thirteen participants were tested at the Univer-
sity of California San Diego, and ethical approval was granted by
the local institutional review board (IRB). All participants pro-
vided written informed consent and had normal or corrected-to-
normal vision. Only 10 participants completed both days of testing
and have been included in the analyses. All participants were naïve

to the purpose of the study and received monetary reimbursement
or optional course credit (with exception of one of the authors,
RR). Participants’ ages were between 19 and 34 (5 female).

Stimuli. Were identical to those used in Experiment 1A with
the following exceptions: We used a monitor with 1600 � 1200
resolution and 120 Hz refresh rate; participants were seated at a
distance of 50 cm from the screen, and the uniform gray back-
ground had a luminance of 51.56 cd/m2.

Procedure. Experiment 1B was similar to Experiment 1A
with the following exceptions: Each trial started with a 200ms
beep (600 Hz) immediately before the upcoming grating (shown
for 100 ms) to alert participants. The grating was followed either
by a short (1 s) or long (4 s) delay, after which participants had 3
s to report the orientation with the mouse probe. Notably, short and
long delay durations were randomly interleaved, while the tempo-
ral distinctiveness on each trial was kept constant. This was done
by calculating the intertrial interval (ITI) dynamically from trial to
trial, based on the participant’s response time: We adapted the
definition of temporal distinctiveness from Souza and Oberauer
(2015), calculating distinctiveness as the delay duration on a given
trial, divided by the time from the offset of the sample display on
the previous trial until the onset of the test display on the current
trial. Using this definition, we adopted a distinctiveness value of
0.1205 throughout all trials, and calculated the ITI between the
upcoming trial (n) and the previous trial (n – 1) as follows:

iti(n�1:n) �
(delayn � distinctiveness � (delayn�1 � RT � Sample � delayn))

distinctiveness

Where reaction time (RT) stands for the response time on trial n –
1, and Sample stands for the duration of the sample stimulus (100
ms). This procedure results in four different trial types: “short–
short”, “long–long”, “short–long”, and “long–short”. As can be
seen in Figure 4, especially a trial with a long delay (4 s) that is
preceded by a trial with a short delay (1 s) requires a considerably
long ITI between the two trials to keep distinctiveness constant.
Also in Figure 4, the response time summed with the ITI is
constant within each trial type. If participants did not respond
within 3 s, a low beep was played (300 Hz) and they automatically
progressed to the next trial. Participants performed 10–50 practice
trials before starting the main task to get used to the restricted
response time. Analyses were performed on trials in which the
participant responded within the required time window, and the
proportion of excluded trials was low (4.5%). Participants com-
pleted 4 blocks of 100 trials over the course of 2 days, resulting in
200 trials per condition.

Results

In Experiment 1B, we tested delay durations of 1 and 4 s while
adjusting the duration of intertrial interval prior to each trial to
maintain a constant level of temporal distinctiveness. The effect of
delay duration in this experiment was highly consistent with our
findings in Experiment 1A.

As can be seen in Figure 5, we observed a statistically signifi-
cant increase in standard deviation between delays of 1 and 4 s,
t(9) � 3; p � .015, indicating a loss of memory precision even
when the distinctiveness of the sample orientation is held constant.
Both the values of standard deviation and the magnitude of its
increase between 1 and 4 s (mean values of 7.32° and 8.44°
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respectively, difference of 1.12°) are consistent with the perfor-
mance observed in Experiment 1A.

Similar to Experiment 1A, there was no significant effect of
delay duration on the probability of guessing, t(9) � 0.95; p �
.367. We observed a marginally significant increase in the circular
variance V, t(9) � 2.1; p � .064, at longer delays, presumably
driven by the increase in standard deviation that was found. Re-
sponse times, though capped by the 3-s maximum, were signifi-
cantly slower at longer delays, t(9) � 3.57; p � .006. The number
of trials on which participants did not respond within the allowed
response window did not differ between 1- and 4-s delay condi-
tions, t(9) � 0.16; p � .875; 89 and 91 total trials respectively
across all participants. The slower response times at longer delays,
which accompanied the observed increase in standard deviation,

suggested that participants found the long delay condition to be
more challenging. Taken together, the results of Experiments 1A
and 1B demonstrate a gradual loss of precision for orientation
information held in working memory, even when temporal dis-
tinctiveness is held constant.

Experiment 2

In Experiment 2, we evaluated visual working memory for
color over prolonged delays, to determine whether memory for
a single color item might also reveal evidence of a gradual loss
of precision over time. Our color displays were appropriately
calibrated using a spectrophotometer to measure spectra of the
red, green and blue phosphors of our CRT monitor, so we could
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Figure 4. Constant temporal distinctiveness in Experiment 1B. Two delay durations, 1 and 4 s, were randomly
interleaved within single blocks of trials, resulting in four trial types: a trial n with a short delay preceded by a
trial n–1 with a short delay (short-short), a long delay n preceded by a short delay n–1 (short-long), a short delay
n preceded by a long delay n–1 (long-short), and a long delay n preceded by a long delay n–1 (long-long). Trials
of all four types had equal distinctiveness due to dynamically calculating the intertrial interval from trial-to-trial.
Please see the online article for the color version of this figure.
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generate appropriate colors in CIE-LAB space. A proper cali-
bration procedure was important to ensure that the rendered
colors were isoluminant and adjacent colors were separated by
a constant hue angle difference (Bae, Olkkonen, Allred, &
Flombaum, 2015). Because colors can be quite well remem-
bered by relying on verbal strategies (e.g., Donkin, Nosofsky,
Gold, & Shiffrin, 2015), we had participants perform a concur-
rent verbal working memory task while maintaining colors in
visual working memory.

Method

Participants. Participants were 12 healthy volunteers (9 female)
recruited at Vanderbilt University, where the study was performed
with approval of the Institutional Review Board of Vanderbilt Uni-
versity. Participants provided their informed consent, had normal or
corrected-to-normal visual acuity and color vision, and were unin-
formed about the purpose of the study. Participants, aged between 19
and 26, completed two 1-hr sessions, and received monetary reim-
bursement for their participation.

Stimuli. Stimuli were generated using MATLAB and the Psy-
chophysics toolbox (Brainard, 1997; Pelli, 1997) and viewed from a
46 cm distance on a color and luminance-calibrated CRT monitor
(1152 � 870 resolution, 75 Hz refresh rate) in a darkened room. For
color-calibration, the spectra of the monitor RGB primaries were
measured at maximum intensity, using an Ocean Optics USB4000
spectrometer. The gamma function of each channel was measured
with a Minolta LS-110 luminance meter. Based on these calibration
data, CIE L�a�b� coordinates were converted to device-dependent
RGB values, using the monitor white point (CIE (x, y) � 0.3208,
0.3104; luminance � 58.56 cd/m2) as reference white.

Participants were instructed to maintain fixation, which was sup-
ported by a chinrest and a central bull’s eye fixation (0.48° diameter,
white). The color stimulus consisted of a centrally presented circular
color patch (3° diameter), with the color randomly chosen from one of
360 color values evenly distributed along a circle in CIE L�a�b� space
(centered at L� � 70, a� � 0, b� � 0, with a radius of 42 units). An
example of the stimulus and experimental design is shown in Figure
2A, middle row. Stimuli were presented against an equiluminant,
achromatic background, which corresponded to the center to the
sampled color space. A Gaussian envelope (SD � 3°) was applied to
the circular color patches, such that saturation fell smoothly from the
center toward the rim. The probe display initially consisted of a small
white circle (0.4° diameter) placed on a color wheel (11.6° inner and
12° outer diameter). Participants could move the white circle along
the color wheel by turning a knob interface (PowerMate 3.0, Griffin
Technology, U.S.A.). Once a response was initiated, a test color patch
appeared at fixation, instantaneously reflecting the color value indi-
cated by the white circle. The color wheel was randomly rotated from
trial to trial, as was the initial position of the white circle, to avoid any
systematic correspondence between spatial location and color.

Procedure. While the grating orientations used in Experiment
1 map naturally onto a circular feature space that is difficult to
verbalize, colors lend themselves well to the use of verbal strate-
gies. We therefore introduced an articulatory suppression compo-
nent to this experiment. At the start of each trial, participants were
presented with three randomly selected digits for 1 s, which they
were instructed to repeat aloud throughout the trial. After a 1-s
interstimulus interval, the visual component of the trial followed,

during which participants first viewed a randomly chosen sample
color (between 0° and 360°) for 200 ms, and then had to maintain
this information over a randomly chosen delay of 1, 3, 6, or 12-s
before giving an unspeeded response. The color wheel with its
white marker appeared after the delay, cuing the participant to
report the previous color from memory. Upon the first movement
of the knob, a color patch appeared centrally, and the participant
could dynamically change the color of this patch by rotating the
knob. The color wheel helped to the participant to navigate through
the color feature space. Once satisfied with their report color,
participants pressed the space bar to continue, at which point they
used the keyboard to input the three digits they had been repeating
aloud until then. The next trial followed 1-s later. A total of 90
trials were obtained in each delay condition, from each participant.
Analyses were performed as described for Experiment 1.

Results

Performance on the digit rehearsal task was nearly perfect across all
delay conditions (overall accuracy 99.5%, SE � 0.17%), indicating
that our participants rehearsed the digits reliably over the delay period.
The circular variance (V) of color report errors is shown in the left
most panel of Figure 6 (in black, left y-axis), and as can be seen, there
is a clear trend of increasing magnitudes of memory error following
longer delays. A repeated-measures ANOVA confirmed that the
circular variance is greater at longer delays, F(3,33) � 6.88; p � .01.
This increase in the circular variance was further explored using
uncorrected paired t tests, which indicated reliable differences be-
tween delays of 1 and 3 s, t(11) � 2.44; p � .03; 1 and 6 s, t(11) � 3.48;
p � .005; and 1 and 12 s, t(11) � 3.68; p � .004; as well as between
delays of 3 and 12 s—t(11) � 2.35; p � .04. The leftmost panel of
Figure 6 also shows the response times in light gray bars (right y-axis).
Response times became longer as a function of delay duration,
F(3,33) � 16.38; p 
 .001; all paired t test p 
 .008. Together, these
results indicate that the overall accuracy of color responses becomes
worse at longer delays.

The middle and right most panel of Figure 6 show the results of
the mixture model analysis. With longer retention periods, there
was a gradual loss of memory precision, F(3,33) � 6.05; p � .002,
as well as a significant increase in the probability of guessing-
related responses, F(3,33) � 4.83; p � .007. Both showed signifi-
cant linear trends over the different delay conditions, F(1,11) �
15.08; p � .003, and F(1,11) � 8.4; p � .014, respectively. Paired
t tests indicated a statistically significant difference in precision
between the shortest 1-s delay condition and all other delays, 3-s
t(11) � 2.44, p � .03; 6-s t(11) � 5.3, p 
 .001; 12-s t(11) � 3.78,
p � .003. Guess responses were more prevalent for delay durations
of 12 s compared with 1 s, t(11) � 2.91, p � .014; and 3, t(11) �
2.22, p � .048; and for a delay of 6 compared with 1 s, t(11) �
2.38; p � .037. These results indicate that maintaining a specific
color over prolonged delays leads to a gradual loss of memory
precision, as well as a greater likelihood of complete memory
failure.

Experiment 3

In Experiment 3, our goal was to determine whether a similar
loss of visual precision over time would be evident when partici-
pants had to retain a complex object over time. To test memory for

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

9GRADUAL DECAY OF VISUAL WORKING MEMORY



complex objects, we developed a set of computer-generated face
stimuli (Figure 2B) that continuously varied along the dimensions
of gender and age (Lorenc et al., 2014). Unlike previous studies of
working memory for complex objects that relied on detection of
discrete changes between object stimuli (e.g., Alvarez & Ca-
vanagh, 2004; Awh, Barton, & Vogel, 2007; Banko et al., 2009),
our creation of a continuous face space allowed for quantification
of the precision of working memory for complex objects, as well
as the rate of memory failure (see also Zhang & Luck, 2009).

Method

Participants. Data sets from 13 healthy participants were
obtained, but one participant was excluded based on extremely
poor overall performance (�2 standard deviation from the group
mean) leaving 12 participants included in the analyses. The exper-
iment took place at Vanderbilt University and was approved by the
Institutional Review Board of Vanderbilt University. Participants
provided written informed consent and were reimbursed mone-
tarily. All participants (ages between 18 and 32; 7 female) had
normal or corrected-to-normal vision and were unaware of the goal
of the study. Each participant completed a total of 360 trials,
distributed across two 1-hr sessions.

Stimuli. Visual stimuli were generated and viewed in the
same manner as in Experiment 2, with the exception that one of the
monitors was replaced midway through the experiment to one of
1400 � 1050 resolution and 60 Hz refresh rate. Stimuli consisted
of gray-scale 3D face images (4.72° by 7.36°) generated with
FaceGen Modeler software (Singular Inversions Inc.) as in Lorenc,
et al. (2014), and presented against a black background
(0.08 cd/m2 and 1.84 cd/m2 for the two monitors). Face images
were normalized to equate for mean luminance. Eight faces vary-
ing along dimensions of age and gender (Figure 2B), forming an
octagonal space, were generated first. Next, each pair of neigh-
boring faces were morphed together linearly in varying propor-
tions (10/90, 20/80 . . . 90/10), ultimately resulting in a set of 80

unique faces which we consider to be spaced evenly along a 360°
approximately circular ‘face space.’ This implies that for our
analyses, each face in this space is 4.5° apart from its neighbor.
The nasal bridge region of each face stimulus was positioned at the
center of the screen, with a gray bull’s eye fixation (0.08° inner
and 0.48° outer diameter) superimposed.

Procedure. Similar to colors, faces can be remembered via
verbal strategies, as is custom in day-to-day life. Therefore, a
verbal suppression component identical to that of Experiment 2
was used (Figure 2A, bottom row). The visual memory part of
each trial started with a 500-ms presentation of a randomly chosen
face stimulus, followed by a 1-, 3-, 6-, or 12-s delay. After the
delay, a centrally presented probe face morphed through the face-
space as participants turned the knob so they could report the face
that best matched their memory. Pressing the space bar allowed
them to continue to the next trial. As in Experiment 2, each
participant completed 90 trials in each delay condition. Analyses
were performed as described for Experiment 1.

Results

The performance on the digit task was again highly accurate in
all delay conditions (overall accuracy 97.6%, SE � 0.81%), sug-
gesting that all our subjects fulfilled the requirement of articulatory
suppression. An analysis of response times indicated that partici-
pants required more time following longer delay periods to report
a face from memory, F(3,33) � 15.95; p 
 .001; all paired t test p 

.03, Figure 7 left panel. The circular variance of response errors
also increased with longer retention durations, F(3,33) � 8.51; p 

.001, and this difference was significant when comparing 1-s with
6-s delays, t(11) � 2.34, p � .039; 1-s with 12-s delays, t(11) �
4.62, p 
 .001; 3-s with 12-s delays, t(11) � 3.3, p � .007; 6-s with
12-s delays, t(11) � 3.27, p � .007.

The precision of working memory for faces tended to decline
over time, as indicated by an increase in standard deviation at
longer delays (Figure 7, middle panel). Although the basic
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repeated-measures ANOVA was only marginally significant,
F(3,33) � 2.705; p � .061, we observed a significant linear contrast
applied to these data, F(1,11) � 7.622; p � .019, which was further
corroborated by uncorrected paired t tests showing that standard
deviation increased from 1 to 12 s, t(11) � 2.68; p � .022. Delay
duration did not significantly affect the proportion of guesses
(Figure 7, right panel), F(3,33) � 1.77; p � .172, when evaluated
by the ANOVA. However, the idea that participants might guess
more often as time wears on was suggested by a statistically
significant linear trend, F(1,11) � 8.866; p � .013, as well as
uncorrected paired t tests showing more guesses at 12-s compared
with 1-s delays, t(11) � 2.67; p � .022. Overall, the results of
Experiment 3 corroborate strongly with those of Experiments 1
and 2, by revealing a gradual loss of memory precision for faces as
a function of temporal delay.

Recall errors from all three experiments showed systematic biases,
such that error magnitude and sign were nonuniform across the
stimulus space (like biases reported in Bae et al., 2015; Pratte et al.,
2017). Such biases were not systematically changed or amplified at
the different delay conditions (supplementary Figures 1 & 2).

Analysis of Rate of Precision Loss Across Experiments

We performed additional analyses to estimate the rate at which
memory precision declined over time for each of the stimulus
types across Experiments 1A, 2, and 3 (which have highly similar
paradigms). This was done by analyzing the standard deviation
values (in °, within each features’ respective space) at each time
point for individual participants, calculating individual slopes of
the best-fitting line to determine the rate of change in standard
deviation over time, and then performing a group-level t test to
determine whether slope values significantly differed from zero.
Figure 8 shows the results of this analysis, with the linear fit for
individual participants indicated by thin colored lines, and the
linear fit averaged across participants indicated by a thick red line.
This analysis revealed a statistically significant loss of memory
precision in all three experiments (i.e., increase in mixture-model

sd) with slope values of � 0.17° sd/s for orientation (SEM � 0.04°
sd/s), t(11) � 4.66, p 
 .001; �0.17°sd/s for color (SEM � 0.05°
sd/s, t(11) � 3.28; p � .007; and � 0.40° sd/s for faces (SEM �
0.16° sd/s), t(11) � 2.44; p � .033. For comparison, we also fit a
square-root temporal decay function to these same data, motivated
by the fact the accumulation of independent noise over time should
lead to a square-root increase in standard deviation (i.e., a linear
increase in variance) over time. The resulting fits of the square-
root model (black dashed line, group average) were very similar to
the predicted linear fits, as indicated by the high degree of overlap
among these fitted curves, and comparable goodness-of-fit values
(mean R2 of 0.655, 0.468, and 0.421 for linear fits of Experiments
1–3, respectively; mean R2 of 0.659, 0.473, and 0.419 for square
root fits of Experiments 1–3, respectively). Because of the high
level of variance present at the shortest delay (i.e., the ‘intercept’
being larger than 0), the amount of bowing that occurs with the
square root function is not obvious. Both models provide reason-
able quantitative fits of loss of working memory precision over
time, and the consistency of these effects is evident across the three
stimulus types.

These results were corroborated by an analysis using mixed-
effects models (Pinheiro & Bates, 2000). Such models, in addition
to the fixed effects of a standard regression model, include random
effects that allow for possible interindividual differences in base-
line precision or slope. Delay duration was entered into the anal-
ysis as a fixed effect, and participant-independent random intercepts
and slopes were added incrementally. The likelihood ratio chi-square
test was used to determine whether adding the participant-specific
intercepts or slopes improved the model.

The model including a fixed effect of delay plus random inter-
cepts for individual participants revealed a significant increase of
standard deviation with increasing delay duration in all three
experiments, with slope estimates similar to those reported above;
orientation: � � �0.17°/s, SE � 0.03°, t(46) � 6.07, p 
 .001;
color: � � �0.17°/s, SE � 0.04°/s, t(46) � 3.72, p 
 .001; face:
� � �0.40°/s, SE � 0.13°/s, t(46) � 2.91, p � .005. Inclusion of
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the random intercepts component was justified by the likelihood
ratio test, orientation: 
2(1) � 20.21, p 
 .001, color: 
2(1) �
41.91, p 
 .001; face: 
2(1) � 6.14, p � .013, with estimated
standard deviations of the random intercepts (i.e., between-
subjects variability in baseline memory precision) of 0.97°, 2.59°,
and 2.74°, for orientation, color, and faces, respectively. On the
other hand, adding random slopes (alone or along with random
intercepts) did not significantly improve goodness of fit for the
model—orientation: 
2s(1) 
 1.43, ps � 0.232—and was there-
fore excluded. Thus, the mixed-effects models corroborate our
conclusion that memory precision is lost over time for all three
stimulus-types tested here.

Model Comparison Analysis of Experiments 1–3

Our statistical analyses of Experiments 1–3 clearly demonstrate
reliable changes in working memory performance as a function of
delay duration, with consistent positive findings of increasing
standard deviation over time. Given that these statistical analyses
were performed on parameter estimates obtained by fitting a
mixture model to error distribution data, it is worth considering
whether a more direct approach to evaluating the data might be
possible. One such option is to adopt a model comparison ap-
proach, by comparing the quality of fits for different models
applied directly to each participant’s data.

We constructed a set of four models that specified how memory
precision (standard deviation) or guess rate (pU) should vary as a
function of delay duration. The Null model assumes no loss of
information over time, requiring that the parameters standard de-
viation and pU are held constant across delay intervals. The
Gradual Decay model assumes that standard deviation increases as
a function of delay duration, while pU remains constant. In con-
trast, the Sudden Death model only allows pU to increase as a
function of duration, but not standard deviation. Finally, the Hy-

brid model allows both standard deviation and pU to change,
assuming that a memory representation can undergo both gradual
deterioration and complete termination.

For all models, the likelihood of observing a given response
error (x) in the ith delay condition is specified by:

Pi(x) � (1 � pUi)VM(0, sdi) � pUi ⁄ (2�),

where sdi and pUi respectively denote the memory precision and
the guess rate in the ith delay condition. The von Mises distribu-
tion, VM, is always centered at 0, assuming no response bias with
respect to the true stimulus value.

We assume that, as memory precision decays, standard devia-
tion increases at a constant rate over time, following a linear
function of retention interval (t):

sdi � sd1 � (ti � t1)sdslope,

where sd1 denotes the baseline precision at the shortest delay
tested (t1), and sdslope denotes the rate of standard deviation change
per unit time. Likewise, complete forgetting of an item is modeled
as a linear increase in pU as a function of t:

pUi � pU1 � (ti � t1)pUslope,

where pU1 denotes the baseline guess rate at the shortest delay
tested (t1), and pUslope denotes the rate of pU change per unit time.

These linear decay and forgetting functions allowed us to fit the
data using a smaller number of free parameters (i.e., sd1, sdslope,
pU1, and pUslope) compared with fitting the mixture model sepa-
rately to each delay duration (sd1	sd4 and pU1	pU4). The linear
function was chosen mainly for its simplicity, and also because our
previous analyses indicated that the linear function described the
effect of delay duration on both standard deviation and pU rea-
sonably well. As free parameters, sdslope and pUslope were con-
strained to have positive values only, to ensure that they provided
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a better fit only when memory performance became worse as a
function of delay duration.

The models were fit to each participant’s data using maximum
likelihood estimation. As a model comparison statistic, we used
the Akaike information criterion (AIC; Akaike, 1974), which is
calculated as:

AIC � �2 ln(L) � 2k,

where L is the maximum likelihood value of the fitted model, and
k is the number of free parameters in the model. Among candidate
models, the model that yields the lowest AIC score is selected as
the best model. The AIC takes into account both goodness of fit
and parsimony of the model, by rewarding high log-likelihoods
and penalizing for extra free parameters.

We calculated the AIC score for each model for each partici-
pant, and then summed the AIC scores across all participants from
each experiment to obtain a total AIC score for each model. The
best fitting model (i.e., lowest) AIC score was subtracted from
each model’s AIC score, indicating how poorly those models did
in comparison to the best fitting model. AIC difference scores for
each model from all experiments are reported in Table 1.

We found that the gradual decay model provided the overall best
fit, yielding the smallest total AIC value in each of the four experi-
ments. In comparison, the sudden death model fared much worse,
outperformed by both null and hybrid models in Experiments 1A and
1B, and by the hybrid model in Experiment 2. Thus, when a single
item must be maintained in working memory, gradual decay provides
the best characterization as determined by AIC.

We also considered which model was selected as the top model
most often, based on individual AIC scores. These individual
measures, while more variable than group data, do provide infor-
mation about data trends at the individual level. Table 1 shows the
number of individuals that favored each of the four models in
parentheses, displayed by experiment. The Gradual Decay model
provided the best fit for 7 of 12 participants and 5 of 10 partici-
pants in Experiments 1A and B (orientation), 4 of 12 participants
in Experiment 2 (color), and 5 of 12 participants in Experiment 3
(face). Although the Hybrid model was the next best performing
model at the group level, the Null model was favored next most
often among individual participants, and benefitted from having
fewer parameters than the more complex models.

We also directly contrasted the Gradual Decay with the Sudden
Death model for those participants showing reliable memory loss
over time. For this comparison, we considered only those partic-
ipants for whom the null model was rejected, and compared only
two possible models (Gradual Decay and Sudden Death). The

Gradual Decay model provided a better fit than the Sudden Death
model in 7 of 9 participants in Experiment 1A, 6 of 6 participants
in Experiment 1B, and 5 of 8 participants in Experiments 2 and 3.

Overall, the model comparison results indicate that when par-
ticipants must maintain a single item in working memory, gradual
decay provides the best account of how memory performance
changes over time. These results strongly corroborate our repeated-
measures and slope analyses showing that standard deviation signif-
icantly increases as a function of delay duration. However, it
would be inappropriate to conclude that these analyses nullify the
statistically significant increase in memory failure we observe at
longer delays in Experiments 2 and 3. Sudden termination can also
contribute to memory loss, and has been found to increase as a
function of delay duration in previous studies (Park et al., in press;
Zhang & Luck, 2009).

Discussion

The question of whether information in visual working memory
is maintained over time in a lossy or lossless manner has been a
matter of longstanding debate. Across all four experiments, we
found evidence of gradual loss of memory precision over time,
even when the frequency of complete memory loss was taken into
account through application of a mixture-model analysis. This loss
of precision over time was also observed when temporal distinc-
tiveness was held constant, implying that longer delays are a root
cause of more variable memory performance. The consequences of
temporal delay on memory precision were evident for simple
visual features of color and orientation, and extended to memory
for complex face stimuli as well. The frequency of complete
memory loss did not reliably change as a function of delay dura-
tion when orientation was the remembered feature. However,
occurrences of complete memory loss were significantly more
frequent at longer delays when a single color or face had to be
maintained in memory. This conclusion was further supported by
model comparison analysis, which revealed that the gradual decay
model outperformed models that assume memory loss through
sudden death. Our findings provide compelling evidence that items
maintained in visual working memory undergo gradual decay due
to the accumulation of random noise over time.

Given our highly consistent and positive findings, why have
previous studies reported null effects of precision loss over time?
Our simulation analyses indicate an important factor to consider,
namely that statistical power to detect a change in memory preci-
sion will be impeded when guess rates are high and baseline
memory precision is low (see Figure 1). In the current study, we

Table 1
�AIC Scores

Model
Experiment 1A Experiment 1B Experiment 2 Experiment 3

Orientation Orientation Color Face

Null 65 (3) 45 (4) 27 (4) 18 (4)
Gradual decay — (7) — (5) — (4) — (5)
Sudden death 73 (2) 54 (0) 16 (2) 9 (3)
Hybrid 14 (0) 14 (1) 2 (2) 15 (0)

Note. AIC � Akaike information criterion. Difference scores are calculated with respect to the best-fitting
model for each experiment, which in all cases proved to be the gradual decay model. Dashes indicate the best
fitting model.
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focused on working memory for single items, which ensured low
rates of memory failure (less than 5%) and superior levels of
baseline precision than would otherwise be achieved by testing
multiple items. In their main experiment, Zhang and Luck (2009)
evaluated working memory for 3 color patches across different
delays. They found that guess rates increased significantly from 1
to 10 s (from 0.26 to 0.39) while the increase in standard deviation
(from 22.9° to 24.4°) did not approach statistical significance. In
our simulation analyses (see Figure 1), we observe a sharp de-
crease in statistical power as guess rates rise upward to 30 or 40%.
Also at these high guess rates, an increase in baseline standard
deviation (from say 10° to 20°) leads to a considerable drop in
power at detecting a proportional increase in standard deviation of
10% or 20%.

Other studies that tested for delay effects with multiple items
have likewise reported null effects of precision loss over time, in
situations where guess rates were very high (e.g., Souza & Ober-
auer, 2015), or guess rates were not estimated so their impact could
not be assessed (Pertzov, Bays, Joseph, & Husain, 2013). A recent
study evaluated working memory for single colors, and further
tested the precision with which participants could reconstruct
colors based on the verbal labels they provided on previous trials
in response to a color stimulus (Donkin et al., 2015). This study did
find positive evidence of a decline in the memory precision at
longer delays, of a magnitude that appears consistent with the
decay reported here. While these researchers ascribed their effect
in terms of a shift from visual memory to a verbal-labeling strat-
egy, we controlled for the use of verbal labels in our Experiments
2 and 3 by requiring articulatory suppression when easy-to-label
stimuli (colors, faces) were tested. Our findings across diverse
stimulus types suggest that gradual loss of precision is a general
and widespread phenomenon.

One might ask whether the precision loss that occurs for single
items in working memory might somehow represent a special case.
Perhaps working memory for multiple items might somehow avoid
mechanisms of gradual decay and noise accumulation, albeit for
reasons as yet unknown? We consider such an account unlikely, as
our lab has obtained direct evidence to refute it. In a separate
study, we investigated working memory for multifeature objects,
requiring participants to remember the colors and orientations of
two colored gratings for delay durations of 1.5s or 5.5s (Park et al.,
in press). This study revealed significant effects of gradual decay
as well as an effect of sudden termination. Estimated standard
deviation for color increased from 19.9° to 21.7° across delays,
t(23) � 5.69, p 
 .001; Cohen’s d � 1.16 and standard deviation
for orientation increased from 14.7° to 17.1° (t(23) � 4.16; p 

.001; Cohen’s d � 0.85). In addition, we observed a significant
increase in guess rates for color from 7% to 12%, t(23) � 3.52; p �
.002; Cohen’s d � 0.72, while guess rates for orientation (10% and
11%) did not; change over this interval, t(23) � 0.52; p � .250. The
results of this separate study indicate the gradual decay of infor-
mation is pervasive, and can be reliably detected when multiple
objects must be maintained in working memory. This study also
supports the finding that longer delays lead to higher rates of
memory failure, as has been reported in previous studies.

Additionally, we ensured that the observed memory decay did
not merely reflect differences in temporal distinctiveness. Some
recent studies have found that differences in temporal distinctive-
ness, rather than delay duration, negatively affected measures of

working memory performance for large arrays of items (Mercer,
2014; Souza & Oberauer, 2015). In such work, temporal distinc-
tiveness has been numerically described as the ratio of the memory
delay to the intertrial interval (Souza & Oberauer, 2015). We
adapted this temporal distinctiveness ratio, and kept the ratio
constant from trial to trial ensuring equal temporal distinctiveness.
Moreover, two delay durations (1 and 4 s) were randomly inter-
leaved within the same blocks of trials. Keeping temporal distinc-
tiveness constant while randomly interleaving trials requires much
more time than it would to present the delay conditions in a
blocked fashion. Nevertheless, blocked presentations have serious
drawbacks, an obvious example being the potential of modifying
the participants’ level of arousal (or boredom) with long blocks of
trials. With our experimental design, we ruled out differences in
temporal distinctiveness explaining the delay effect, supporting the
idea that memories decay over time.

In addition to the changes in the accuracy of working memory
over time, we found that response times were considerably slower
following longer delays, increasing in an approximately linear
fashion for all three types of stimuli. Longer response times may
reflect the fact that participants became less sure of the accuracy of
visual working memory with the passage of time, which would be
expected if their internal representations became noisier (Nilsson
& Nelson, 1981). One might even construe working memory
retrieval as a decision process based on noisy evidence, in which
case having to accumulate information from noisier representa-
tions should lead to slower decisions and longer response times
(Pearson, Raškevičius, Bays, Pertzov, & Husain, 2014). Note that
response times in our experiments were unspeeded (Experiments
1a, 2, and 3) and thus did not directly test decision-making pro-
cesses. Nevertheless, these results provide another way of demon-
strating that participants found it more difficult to make a response
at longer delays, and these effects were highly consistent across
our experiments, including Experiment 1b where responses were
made under time constraints.

The fact that longer retention periods lead to a consistent de-
crease in precision is consistent with the proposal that working
memory representations gradually accumulate noise over time.
These results have important implications for neural models of
working memory, which must ultimately address how neural noise
should be understood and incorporated to appropriately character-
ize human working memory performance (Bays, 2014, 2015;
Brody, Romo, & Kepecs, 2003; Fougnie, Suchow, & Alvarez,
2012; Simmering, Schutte, & Spencer, 2008; Sreenivasan, Curtis,
& D’Esposito, 2014; van den Berg et al., 2012; Wang, 2001; Wei,
Wang, & Wang, 2012).

Our findings demonstrate systematic changes in memory precision
over time. Resource models of working memory assume that working
memory has no discrete capacity limit, but that memory precision for
a given item declines in a continuous fashion as a function of set size
because working memory resources become thinly divided among the
items (Ma, Husain, & Bays, 2014). According to this account, one
might expect visual working memory for an item to gradually degrade
over time, until the representation becomes so noisy that behavioral
accuracy appears similar to random guessing (Bays, 2015; Fougnie et
al., 2012; van den Berg, et al., 2012). Our data do not directly speak
to the issue of whether the guessing-like responses occurring at longer
delays reflect severely degraded memory representations or complete
termination of the representations. However, we want to point out that
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the occurrence of such extreme errors tends to increase as a function
of time, suggesting that a memory representation is more likely to
undergo an abrupt change in noise level as the representation is
maintained over longer periods. The resource-based view can be
contrasted with slot-based models of visual working memory. Slot
models state that 3–4 discrete items can be stored in working memory
(Luck & Vogel, 1997). The slots-plus-averaging account (Zhang &
Luck, 2008) further suggests that when a single item is remembered,
each slot can be utilized to hold a noisy estimate of that item. If more
available slots are dedicated to a single item, then averaging across
multiple slots will lead to a more precise estimate. In this framework,
it is also possible that the likelihood of a slot being dropped increases
as a function of time, causing reduced precision of report. An item
will eventually become inaccessible when all slot representations of
that item have been dropped.

An important and challenging question for future research con-
cerns the relationship between gradual loss of memory precision
and the sudden termination of working memory. Our findings
suggest that both mechanisms are likely at play. If the mechanisms
underlying noise accumulation and complete memory loss are
truly independent, one would expect that memory for an item
could suddenly fail, perhaps due to an attentional lapse, regardless
of its current noise level. Alternatively, noise accumulation and
complete loss might reflect two phases of a common process,
whereby noise accumulates first, followed by a complete loss once
the noise level exceeds some threshold. It will be interesting to see
if future investigations of the evolution of visual working memory
over time can help to distinguish between these differing theoret-
ical perspectives.

In summary, our study reveals that basic features and complex
objects maintained in working memory undergo a gradual loss of
precision over time, as well as an increased likelihood of sudden
termination. Consistent decline in precision over time indicates
that working memory representations are quite stable but are
nevertheless subject to the gradual accumulation of internal noise.
Further investigation into the nature of visual working memory
and how it evolves over time may provide new insights into the
underlying mechanisms and limits, and could prove valuable for
understanding how working memory operates and dynamically
adapts to ongoing cognitive demands.
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